FANNC: A Fast Adaptive Neural Network Classifier

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting the differences: A fast Bayesian classifier neural network

A Bayesian classifier that up-weights the differences in the attribute values is discussed. Using four popular datasets from the UCI repository, some interesting features of the network are illustrated. The network is suitable for classification problems.

متن کامل

ABN: A Fast, Greedy Bayesian Network Classifier

Adaptive Bayes Network (ABN) is a fast algorithm for constructing Bayesian Network classifiers using Minimum Description Length (MDL) and automatic feature selection. ABN does well in domains where Naive Bayes fares poorly, and in other domains is, within statistical bounds, at least as good a classifier.

متن کامل

A self-organizing HCMAC neural-network classifier

This paper presents a self-organizing hierarchical cerebellar model arithmetic computer (HCMAC) neural-network classifier, which contains a self-organizing input space module and an HCMAC neural network. The conventional CMAC can be viewed as a basis function network (BFN) with supervised learning, and performs well in terms of its fast learning speed and local generalization capability for app...

متن کامل

A Convolutional Neural Network Neutrino Event Classifier

Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge and Information Systems

سال: 2000

ISSN: 0219-1377,0219-3116

DOI: 10.1007/s101150050006